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Advances in information collection and analysis
are reaching the point of providing physicians
with the help of computer-based assistants.
These systems will provide rapid second
opinions to physicians in a clinical setting as
well as assist them in the analysis oflarge sets of
patient descriptions for research purposes. This
paper presents INC2.5 as such a decision-
support system. INC2.5 extracts information
from databases of previously seen patients to
build a decision tree which is used to predict the
outcome of new patients on a chosen variable.
The concept of matching new patients with the
most similar previously seen patient, on which
INC2.5 is based, can be easily understood by its
users. Further adding to INC2.S's ease ofuse is
its flexibility in allowing users to customize
decision trees to their liking. In order to convey
the uncertainty of the environment, INC2.5
presents all decisions with a confidencefactor.

INTRODUCTION
Doctors are faced with the process of making
critical decisions everyday. While years of
experience can help them be more efficient and
accurate in their diagnoses, automated decision
support tools can add an extra measure of
confidence. However, their usefulness will
extend only as far as the user's trust. This trust
can be achieved by providing accurate results
over an extended period of time. The clinical
advantage of such systems will extend well
beyond helping one doctor make better
decisions. Eventually they will facilitate the
spread of knowledge to institutions with fewer
resources.

For the physician involved in research, a
decision support system should be able to assist
him/her in finding correlation's amongst large
quantities of data. Additionally, the system
should be able to decipher which predictor
variables appear to be most relevant to the
selected predictive variable. With such
information, the physician could minimize the
number of tests required for an accurate
diagnosis, thereby reducing the cost of care.

INC2.5
INC2.5 [6] is a general classification system
capable of uncovering patterns of relationship
amongst records stored in databases. INC2.5,
similarly to COBWEB[1], CLASSIT[2],
CYRUS[3], UNIMEM[4], and CLUSTER/2[5],
works in an incremental manner, incorporating
new knowledge one experience at a time. This is
similar to the way humans learn over time and
can be viewed as analogous to the physicians
pattern of seeing one patient at a time.
Hereafter, the term patient will be used to
replace experience when referring to a single
encounter.

INC2.5 differs from other classification systems
in several key issues: (a) evaluation function, (b)
tree-building operators, and (c) classification and
prediction algorithms. First, INC2.5 uses a
similarity-based patient evaluation function
which optimizes patient's predictive variable
only with respect to the most similar group of
previously seen patients rather than with respect
to all available patients. Second, INC2.5 uses
unique tree-building operators, pull-in and pull-
out, to reverse unwarranted decisions made Early
in the classification process when less
information was available. Finally, the
classification and prediction algorithms are
designed to maximize predictive performance of
the system in the presence of noise.

Classification
INC2.5 uses the evaluation function to classify
and group patients based on similarities and
dissimilarities found in their patient
descriptions[6,7]. Each patient description
contains a list of information the physician
deems possibly relevant to the diagnosis in
question. This list contains information ranging
from patient age to specific test results and
hereafter will be referred to as the patient's
variables. Each group of patients within the
decision tree, will be referred to as a category.
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The process of building the decision tree is
known as classification. Each new patient is
classified into the branch of the tree which
maximizes the evaluation function. The
evaluation function can be broken into two
components, similarity and cohesiveness.
Similarity is used for both classifying previous
patients and predicting the class membership of
new patients. Cohesiveness calculates the
average similarity of all pairs of patients
contained in a category.

The similarity of two patients is based on the
comparison between the two sets of variables.
The function is derived from the contrast
model[8], which defines similarity as a linear
combination of common and distinctive
variables. The following equations review the
similarity function s(A,B) where A and B denote
descriptions of patients or categories a and b,
respectively; c(A,B) represents the contribution
of a's and b's common variables; and d(A,B)
introduces the influence of the variables of a not
shared by b.

s(AB) =sim(A.B) + sim (B.A)
s(A,B) = 2
sim(A,B) = c(A.B) - d(A.R)

c(A,B) + d(A,B)
The degree of similarity between A and B ranges
from -1.0 to +1.0. In an extreme case where A
and B are identical then c(A,B) would have a
value, while d(A,B) and d(B,A) would equal
zero, yielding the similarity measure equal to
1.0. Conversely, if they are completely
dissimilar all the values will be in d(A,B) and
d(B,A) while c(A,B) equals zero, yielding -1.0.

The cohesiveness measures also ranges from -1.0
to +1.0 and reflects the similarity between all
member patients within a given category. A
category will have a cohesiveness measure of 1.0
if and only if all member patients are identical.
On the other hand, a category in which member
patients are completely opposite would have a
cohesiveness measure of -1.0.

Prediction
Prediction follows classification and works on
the same principle. INC2.5's goal is to maximize
the similarity score between the patient in
question and one of the patients in the decision
tree. This is efficiently achieved by only
searching the branches which maximize

similarity, thus providing an effective method of
indexing decision trees. Once the system has
searched the appropriate branches, the outcome
of the most similar patient will be used as the
prediction for the new patient. Furthermore, the
system will report the similarity score which is in
essence the degree of confidence INC2.5 has in
the prediction.

Customization of Decision Trees
INC2.5 is flexible enough to allow physicians to
build custom decision trees. The easiest way to
customize a decision tree is to build it using a
selected group of patients, patient variables, or
both. For example, a physician may wish to
have only his/her patients included in the tree.
While this might limit the variety of patients, it
could ensure that all data was collected more
consistently.

Besides changing the input data, INC2.5 allows
the user to adjust certainty (CT) and variable
(VT) thresholds which can be used to fine tune a
decision tree to be most effective within a given
domain. The certainty threshold is used to
determine if there is enough evidence to support
a prediction. In order for INC2.5 to make a
prediction, the similarity score of the closest
match must exceed the certainty threshold. With
the default value, CT = -1, INC2.5 will always
make a prediction. At higher degrees of
certainty, it is possible that no patient will be
found with a similarity greater than the required
certainty. In this case any number of methods
could be used to provide the user feedback
including the use of prior probability or stating
that no prediction is possible with the given
information.

The variable threshold requires a greater
understanding of INC2.5. This threshold
attempts to weed out patient variables which are
inconsistent with those of other patients within
the same category. Inconsistent values can occur
either in variables which are less relevant to the
diagnosis or via data entry errors. When
comparing a patient with an existing category,
the category will have multiple values for each
variable representing the union of all member
patient's values for the variable in question. The
patient is said to have this variable in common if
the category has the same value for the variable.
For example, assume a category consists of eight
red and two blue members. In this situation if
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VT = 0, the default value, all objects with either
red or blue color would have the color variable
in common. On the other hand, if the threshold
value is greater than the percentage of blue
objects, VT > 0.2, any new object with the color
blue will NOT have the color variable in
common with this category. Consequently, the
higher the incidence of a variable in a given
category, the higher its relevance to the category
description.

In general, INC2.5 is a flexible decision support
system whose results can be used in a clinical
setting as a second opinion or in a research
setting for data analysis.

TEST DATABASE
The medical database used for testing INC2.5
include breast cancer, general trauma, and low
back pain. While INC2.5 performed consistently
across all domains, we will restrict our
discussion to the widely available breast cancer
database1 which was retrieved from the machine
learning repository at University of California at
Irvine. It consists of 699 patients with two ideal
classes, YES and NO. YES means the patient
had a recurrence of breast cancer within five
years, and NO means there was no recurrence
during the five year period. Within the database,
458 of the patients are benign, NO, and 241 are
malignant, YES. For each patient there are nine
associated variables.

TESTING METHODOLOGY
INC2.5 results, presented in the following
section, show performance for various tree sizes
and threshold settings. Each point in the graphs
represents an averaged performance over a series
of ten runs. For each run, a classification set and
prediction set of patients were randomly selected
from the database so that no patient appeared
more than once in the union of the two sets. The
classification set was then used to build the
decision tree subsequently utilized to predict the
outcome variable, YES/NO reoccurrence, for
each patient in the prediction set.

The outcome variable is only used once a match
has been found, at which time INC2.5 predicts
the same outcome for the new patient. In other

1The breast cancer database was obtained from Dr.
William H. Wolberg at the University of Wisconsin
Hospitals, Madison.

words, the outcome variable neither influences
the classification process nor guides the
prediction process.

PERFORMANCE ANALYSIS
This section will perform a step by step analysis
of the database. The steps presented here are just
a guideline to follow. Tests can be performed in
any order once a user is familiar with INC2.5.

Initial Learning Curve
Step one is to build a learning curve using
default values for both thresholds. A learning
curve will answer two important questions: (1) Is
INC2.5 predicting significantly better than
random guessing, i.e. 50% for two category
domains? (2) What is the optimal tree size
required to maximize accuracy while minimizing
time? As demonstrated in Figure 1, the initial
learning curve (CT = -1) is performing
significantly better than random guessing.

When comparing the tree size to its performance
the learning curve grows as expected by
gradually improving with the size of the tree. It
flattens just past the tree size of 100 patients.
This would indicate that a random sample of 100
patients is sufficient to distinguish amongst the
various outcomes. In other words, patient
samples greater than 100 added no additional
knowledge to the decision tree.
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Figure 1 Breast cancer learning curves

Adjusting Certainty Threshold
Step two is to adjust the certainty threshold (CT),
thereby increasing the desired level of
confidence for each prediction. Figure 1 shows
that when CT = 0, meaning at least half of the
variables are identical, the performance of
INC2.5 is consistently better than that obtained
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with CT = -1. Increasing the threshold to 0.5
improves performance to almost flawless
prediction.

On the down side, Figure 2 shows the number of
patient diagnoses INC2.5 was unsure about. At
the original threshold, CT = -1, INC2.5 will
always give a prediction, thus the flat curve at
zero patients not predicted. Moving up to a zero
threshold, the domain shows a curve with a
negative slope indicating, as one would expect,
with a larger classification set INC2.5 is able to
find good matches for more patients in the
prediction set. The outcome remains consistent
with expectations at the 0.5 threshold level as
well.

By evaluating Figures 1 and 2 we can conclude
that INC2.5 will perform well in both small and
large data sets, but with a degree of confidence
directly proportional to the tree size.
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Figure 2 Number not predicted

Adjusting the Variable Threshold
Step three, determining the optimal variable
threshold level, will give the user an idea of
each variable's usefulness in the prediction of the
outcome variable. Figure 3 displays a learning
curve with a constant certainty threshold while
adjusting the variable threshold to demonstrate
its effect on the test domain.

The variable threshold has the most effect on

databases with little consistency amongst
variable values. In these cases, a high threshold
would eliminate many variables thereby
narrowing information used to make decisions.

When set properly, the threshold will eliminate
the infrequent variable values which cloud the
decision process, thereby maximizing the ability

to find good matches in the tree. For example,
Figure 3 demonstrates how the threshold worked
effectively for the tree of twenty-five patients
improving performance as the system eliminated
a greater number of variables.
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Figure 3 Effects of the variable threshold

Notice for larger patient sets the highest
threshold caused a drop in performance. This
indicates that too many variables were

eliminated from the decision process. The 0.2
threshold neither improved nor hurt performance
on the larger patient sets while helping the
decision process in the smallest patient set.
Therefore, for the breast cancer database 0.2
would be the optimal threshold.

Determining Variable Relevance
Step four, attempting to reduce the number of
variables required for the decision process can

produce two major benefits: (1) a reduced set of
attributes which would make statistical analysis
easier and (2) if proven to be effective, many

costly tests could be eliminated during the
diagnosis process. The variable reduction
process assumes INC2.5 has been successful at
forming a tree with categories containing a

majority of patients having the same outcome.
In that case, the variables common to most
patients are good predictors of the outcome,
while variables which vary widely over the
category are not relevant to the outcome.

For this test a tree of one-hundred patients was

built using all provided variables. Then INC2.5
systematically reduced the number of relevant
variables by incrementing the relevancy
measure. The relevancy measure is an

experiential indicator sensitive to the depth of
the tree as well as the frequency and
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distributions of variable values. Figure 4 shows
prediction results plotted against the number of
variables used during training and prediction.
The same training and prediction sets were used
for all runs thereby making the variables used
the only varying factor.

During this test, the relevancy measure is
incremented one percent at a time and new
prediction results are generated at each
percentile where one or more variables drop out.

Figure 4 shows that the number of variables can
often be dramatically reduced without significant
loss in performance. In this example, the
prediction rate was maintained while the number
of variables dropped from nine to one, that being
uniformity of cell size.

The benefits of reducing the amount of
information required for accurate diagnosis will
be reaped in both research and clinical tenns.
Researchers will save precious resources during
future data collection. Clinical staffs will save
time and money by eliminating unnecessary tests
which in turn could have a positive effect on
controlling the cost of health care.
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Figure 4 Effects of reducing the variables used
during classification and prediction.

CONCLUSION
INC2.5 has the ability to look at sets of patients
and provide quality information concerning the
predictability of an outcome variable as well as
the relevance of patient variables with respect to
the outcome. Once the user has formed general
characteristics of the data, he/she can fine tune
INC2.5 for optimal performance. Increased
performance can be achieved via three basic
methods:

1. adjusting certainty threshold
2. adjusting variable threshold
3. eliminating irrelevant variables

The certainty threshold is easiest to use and
generally yields the greatest improvement in
accuracy. The variable threshold requires a
greater understanding of the analysis process,
thus making it more difficult to find an optimal
value, but it adds to the accuracy of the
prediction results. Finally, eliminating variables
can preserve the quality of the output while
reducing the cost of data acquisition.

Future work will concentrate on providing the
ability to evaluate linear variables and enabling
INC2.5 to read XBase data storage format.
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